3.221 \(\int \frac{x^8}{\sqrt{a+b x^3+c x^6}} \, dx\)

Optimal. Leaf size=104 \[ \frac{\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{24 c^{5/2}}-\frac{b \sqrt{a+b x^3+c x^6}}{4 c^2}+\frac{x^3 \sqrt{a+b x^3+c x^6}}{6 c} \]

[Out]

-(b*Sqrt[a + b*x^3 + c*x^6])/(4*c^2) + (x^3*Sqrt[a + b*x^3 + c*x^6])/(6*c) + ((3*b^2 - 4*a*c)*ArcTanh[(b + 2*c
*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(24*c^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0886356, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1357, 742, 640, 621, 206} \[ \frac{\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{24 c^{5/2}}-\frac{b \sqrt{a+b x^3+c x^6}}{4 c^2}+\frac{x^3 \sqrt{a+b x^3+c x^6}}{6 c} \]

Antiderivative was successfully verified.

[In]

Int[x^8/Sqrt[a + b*x^3 + c*x^6],x]

[Out]

-(b*Sqrt[a + b*x^3 + c*x^6])/(4*c^2) + (x^3*Sqrt[a + b*x^3 + c*x^6])/(6*c) + ((3*b^2 - 4*a*c)*ArcTanh[(b + 2*c
*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(24*c^(5/2))

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 742

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
 && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^8}{\sqrt{a+b x^3+c x^6}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )\\ &=\frac{x^3 \sqrt{a+b x^3+c x^6}}{6 c}+\frac{\operatorname{Subst}\left (\int \frac{-a-\frac{3 b x}{2}}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{6 c}\\ &=-\frac{b \sqrt{a+b x^3+c x^6}}{4 c^2}+\frac{x^3 \sqrt{a+b x^3+c x^6}}{6 c}+\frac{\left (3 b^2-4 a c\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{24 c^2}\\ &=-\frac{b \sqrt{a+b x^3+c x^6}}{4 c^2}+\frac{x^3 \sqrt{a+b x^3+c x^6}}{6 c}+\frac{\left (3 b^2-4 a c\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^3}{\sqrt{a+b x^3+c x^6}}\right )}{12 c^2}\\ &=-\frac{b \sqrt{a+b x^3+c x^6}}{4 c^2}+\frac{x^3 \sqrt{a+b x^3+c x^6}}{6 c}+\frac{\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{24 c^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.0333565, size = 88, normalized size = 0.85 \[ \frac{\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )+2 \sqrt{c} \left (2 c x^3-3 b\right ) \sqrt{a+b x^3+c x^6}}{24 c^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/Sqrt[a + b*x^3 + c*x^6],x]

[Out]

(2*Sqrt[c]*(-3*b + 2*c*x^3)*Sqrt[a + b*x^3 + c*x^6] + (3*b^2 - 4*a*c)*ArcTanh[(b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a
+ b*x^3 + c*x^6])])/(24*c^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0.018, size = 0, normalized size = 0. \begin{align*} \int{{x}^{8}{\frac{1}{\sqrt{c{x}^{6}+b{x}^{3}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(c*x^6+b*x^3+a)^(1/2),x)

[Out]

int(x^8/(c*x^6+b*x^3+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(c*x^6+b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.61118, size = 475, normalized size = 4.57 \begin{align*} \left [-\frac{{\left (3 \, b^{2} - 4 \, a c\right )} \sqrt{c} \log \left (-8 \, c^{2} x^{6} - 8 \, b c x^{3} - b^{2} + 4 \, \sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c x^{3} + b\right )} \sqrt{c} - 4 \, a c\right ) - 4 \, \sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c^{2} x^{3} - 3 \, b c\right )}}{48 \, c^{3}}, -\frac{{\left (3 \, b^{2} - 4 \, a c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c x^{3} + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{6} + b c x^{3} + a c\right )}}\right ) - 2 \, \sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c^{2} x^{3} - 3 \, b c\right )}}{24 \, c^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(c*x^6+b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/48*((3*b^2 - 4*a*c)*sqrt(c)*log(-8*c^2*x^6 - 8*b*c*x^3 - b^2 + 4*sqrt(c*x^6 + b*x^3 + a)*(2*c*x^3 + b)*sqr
t(c) - 4*a*c) - 4*sqrt(c*x^6 + b*x^3 + a)*(2*c^2*x^3 - 3*b*c))/c^3, -1/24*((3*b^2 - 4*a*c)*sqrt(-c)*arctan(1/2
*sqrt(c*x^6 + b*x^3 + a)*(2*c*x^3 + b)*sqrt(-c)/(c^2*x^6 + b*c*x^3 + a*c)) - 2*sqrt(c*x^6 + b*x^3 + a)*(2*c^2*
x^3 - 3*b*c))/c^3]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{\sqrt{a + b x^{3} + c x^{6}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(c*x**6+b*x**3+a)**(1/2),x)

[Out]

Integral(x**8/sqrt(a + b*x**3 + c*x**6), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{\sqrt{c x^{6} + b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(c*x^6+b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x^8/sqrt(c*x^6 + b*x^3 + a), x)